Initial commit: Discord automation tools

This commit is contained in:
2026-01-27 10:13:41 +01:00
commit 7f5d3c2ca7
41 changed files with 983407 additions and 0 deletions

View File

@@ -0,0 +1,267 @@
import os
import sys
import json
from datetime import datetime
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from collections import Counter
import nltk
from nltk.tokenize import word_tokenize
import emoji
from sklearn.linear_model import LinearRegression
import warnings
warnings.filterwarnings("ignore", category=UserWarning, message="Converting to PeriodArray/Index representation will drop timezone information.")
# Add the parent directory to the Python path
script_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(script_dir))
sys.path.insert(0, project_root)
from discord_tools.config.settings import DATA_DIR
# Download required NLTK resources
nltk.download('punkt', quiet=True)
nltk.download('punkt_tab', quiet=True)
# Set up plot style
plt.style.use('ggplot')
plt.rcParams['font.family'] = 'DejaVu Sans'
class DiscordMessageAnalyzer:
def __init__(self, file_name):
self.file_path = os.path.join(DATA_DIR, file_name)
self.df = self.load_and_process_messages()
self.output_dir = os.path.join(DATA_DIR, 'message_analysis')
self.combined_dir = os.path.join(self.output_dir, 'combined')
self.users = self.df['author'].unique()
self.user_dirs = {user: os.path.join(self.output_dir, user) for user in self.users}
self.create_output_directories()
def load_and_process_messages(self):
with open(self.file_path, 'r', encoding='utf-8') as file:
messages = json.load(file)
df = pd.DataFrame(messages)
df['timestamp'] = pd.to_datetime(df['timestamp'], format='ISO8601')
df['timestamp'] = df['timestamp'].dt.tz_convert('Europe/Stockholm')
df['date'] = df['timestamp'].dt.date
df['hour'] = df['timestamp'].dt.hour
df['day_of_week'] = df['timestamp'].dt.dayofweek
df['month'] = df['timestamp'].dt.month
df['year'] = df['timestamp'].dt.year
df['word_count'] = df['content'].astype(str).apply(lambda x: len(x.split()))
return df
def create_output_directories(self):
os.makedirs(self.output_dir, exist_ok=True)
os.makedirs(self.combined_dir, exist_ok=True)
for user_dir in self.user_dirs.values():
os.makedirs(user_dir, exist_ok=True)
def analyze_message_frequency(self, df):
daily_messages = df.groupby('date').size().reset_index(name='message_count')
peak_day = daily_messages.loc[daily_messages['message_count'].idxmax()]
avg_messages = daily_messages['message_count'].mean()
weekly_messages = df.groupby(df['timestamp'].dt.to_period('W').astype(str)).size()
monthly_messages = df.groupby(df['timestamp'].dt.to_period('M').astype(str)).size()
return {
'daily_messages': daily_messages,
'peak_day': peak_day,
'avg_messages': avg_messages,
'weekly_messages': weekly_messages,
'monthly_messages': monthly_messages
}
def visualize_message_frequency(self, data, output_dir):
plt.figure(figsize=(12, 6))
sns.lineplot(x='date', y='message_count', data=data['daily_messages'])
plt.title('Daily Message Frequency')
plt.xlabel('Date')
plt.ylabel('Number of Messages')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'daily_message_frequency.png'))
plt.close()
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 12))
sns.lineplot(data=data['weekly_messages'], ax=ax1)
ax1.set_title('Weekly Message Trend')
ax1.set_xlabel('Week')
ax1.set_ylabel('Number of Messages')
ax1.tick_params(axis='x', rotation=45)
sns.lineplot(data=data['monthly_messages'], ax=ax2)
ax2.set_title('Monthly Message Trend')
ax2.set_xlabel('Month')
ax2.set_ylabel('Number of Messages')
ax2.tick_params(axis='x', rotation=45)
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'message_trends.png'))
plt.close()
def analyze_timing(self, df):
hourly_activity = df.groupby('hour').size()
daily_activity = df.groupby('day_of_week').size()
return {
'hourly_activity': hourly_activity,
'daily_activity': daily_activity,
}
def visualize_timing(self, data, output_dir):
plt.figure(figsize=(12, 6))
sns.barplot(x=data['hourly_activity'].index, y=data['hourly_activity'].values)
plt.title('Hourly Message Activity')
plt.xlabel('Hour of Day')
plt.ylabel('Number of Messages')
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'hourly_activity.png'))
plt.close()
plt.figure(figsize=(12, 6))
sns.barplot(x=['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], y=data['daily_activity'].values)
plt.title('Daily Message Activity')
plt.xlabel('Day of Week')
plt.ylabel('Number of Messages')
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'daily_activity.png'))
plt.close()
def analyze_content(self, df):
avg_words = df['word_count'].mean()
all_words = ' '.join(df['content'].astype(str).str.lower())
word_freq = Counter(word_tokenize(all_words))
emoji_freq = Counter(char for char in all_words if char in emoji.EMOJI_DATA)
return {
'avg_words': avg_words,
'word_freq': word_freq,
'emoji_freq': emoji_freq,
}
def visualize_content(self, data, output_dir):
plt.figure(figsize=(12, 6))
word_freq_df = pd.DataFrame(data['word_freq'].most_common(20), columns=['Word', 'Frequency'])
sns.barplot(x='Frequency', y='Word', data=word_freq_df)
plt.title('Top 20 Most Common Words')
plt.xlabel('Frequency')
plt.ylabel('Word')
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'word_frequency.png'))
plt.close()
plt.figure(figsize=(12, 8))
emoji_freq_df = pd.DataFrame(data['emoji_freq'].most_common(20), columns=['Emoji', 'Frequency'])
bars = plt.barh(emoji_freq_df['Emoji'], emoji_freq_df['Frequency'])
plt.title('Top 20 Most Used Emojis')
plt.xlabel('Frequency')
plt.ylabel('Emoji')
for i, bar in enumerate(bars):
width = bar.get_width()
plt.text(width, bar.get_y() + bar.get_height()/2, f'{width}', ha='left', va='center')
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'emoji_usage.png'))
plt.close()
def analyze_user_comparison(self):
user_stats = {user: {
'message_count': len(df),
'avg_message_length': df['word_count'].mean(),
'most_active_hour': df['hour'].value_counts().index[0],
'most_used_words': Counter(' '.join(df['content'].astype(str)).split()).most_common(10)
} for user, df in self.df.groupby('author')}
return user_stats
def visualize_user_comparison(self, data, output_dir):
plt.figure(figsize=(12, 6))
sns.barplot(x=[user for user in self.users], y=[data[user]['message_count'] for user in self.users])
plt.title('Message Count by User')
plt.xlabel('User')
plt.ylabel('Number of Messages')
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'user_message_count.png'))
plt.close()
plt.figure(figsize=(12, 6))
sns.barplot(x=[user for user in self.users], y=[data[user]['avg_message_length'] for user in self.users])
plt.title('Average Message Length by User')
plt.xlabel('User')
plt.ylabel('Average Word Count')
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'user_avg_message_length.png'))
plt.close()
def analyze_advanced_analytics(self, df):
monthly_activity = df.groupby([df['timestamp'].dt.to_period('M').astype(str), 'author']).size().unstack()
X = np.array(range(len(monthly_activity))).reshape(-1, 1)
y = monthly_activity.sum(axis=1).values
model = LinearRegression().fit(X, y)
future_months = np.array(range(len(monthly_activity), len(monthly_activity) + 6)).reshape(-1, 1)
predicted_activity = model.predict(future_months)
return {
'monthly_activity': monthly_activity,
'predicted_activity': predicted_activity
}
def visualize_advanced_analytics(self, data, output_dir):
plt.figure(figsize=(12, 6))
data['monthly_activity'].plot(kind='area', stacked=True)
plt.title('Communication Patterns Over Time')
plt.xlabel('Month')
plt.ylabel('Number of Messages')
plt.legend(title='User', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'communication_patterns.png'))
plt.close()
plt.figure(figsize=(12, 6))
plt.plot(range(len(data['monthly_activity'])), data['monthly_activity'].sum(axis=1), label='Actual')
plt.plot(range(len(data['monthly_activity']), len(data['monthly_activity']) + 6), data['predicted_activity'], label='Predicted')
plt.title('Message Activity Trend and Prediction')
plt.xlabel('Months from Start')
plt.ylabel('Number of Messages')
plt.legend()
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'activity_prediction.png'))
plt.close()
def run_analysis(self):
print("Running combined analysis...")
self.run_analysis_for_data(self.df, self.combined_dir)
for user in self.users:
print(f"Running analysis for user: {user}")
user_df = self.df[self.df['author'] == user]
self.run_analysis_for_data(user_df, self.user_dirs[user])
def run_analysis_for_data(self, df, output_dir):
freq_data = self.analyze_message_frequency(df)
self.visualize_message_frequency(freq_data, output_dir)
timing_data = self.analyze_timing(df)
self.visualize_timing(timing_data, output_dir)
content_data = self.analyze_content(df)
self.visualize_content(content_data, output_dir)
if output_dir == self.combined_dir:
user_data = self.analyze_user_comparison()
self.visualize_user_comparison(user_data, output_dir)
advanced_data = self.analyze_advanced_analytics(df)
self.visualize_advanced_analytics(advanced_data, output_dir)
def main():
file_name = 'message_data.json'
analyzer = DiscordMessageAnalyzer(file_name)
analyzer.run_analysis()
print(f"Analysis complete. Results saved in '{analyzer.output_dir}'.")
if __name__ == "__main__":
main()